PENERAPAN ALGORITMA K-MEANS UNTUK CLUSTERING SANTRI PRA-SEJAHTERA DI YAYASAN BANTUAN SOSIAL (YBS) AZ-ZAINIYYAH PONDOK PESANTREN NURUL JADID

Sudriyanto Sudriyanto, Ahmad Khairi, Atoillah Shohibul Hikam

Abstract


The problem of poverty is a social problem that has a sizeable impact in various countries, not only in a large scope, but even on a small scale, poverty is a problem that needs special attention, one example is within the scope of Islamic boarding schools. In this study, the dataset was obtained from Pedatren, namely data from SLTP and SLTA Nurul Jadid Islamic Boarding School students in 2021. The algorithm used in this research is the K-Means Clustering method. The K-Means Clustering method is an Unsupervised technique, as well as a method of grouping data into several groups, according to each other's characteristics. The advantages of the K-Means algorithm are relatively simple and easy to implement, scalable for large datasets, easily adaptable to new examples, commonly implemented to clusters of different shapes and sizes. The amount of data used is 749 junior and senior high school students data, divided into 4 clusters namely (C1) Pre-Prosperous Families (C2) Prosperous Families 1 Prosperous Families 2 (C3) and Prosperous Plus Families (C4). As for the phase that done in this research such as identifying a problem, a literature review, data collection, prepocessing, the implementation of k-means algorithm clustering and the last evalusi the results of. From the results of the grouping of clusters of data or C1 = 163, C2 = 215, C3 = 246 and C4 = 125.The end of use evalusi matrix davies bouldin mem-peroleh akurai 0,90 value index.


Keywords


Davies Bouldin Index, K-Means Clustering, Pre-Prosperous, Santri

References


Presiden Republik Indonesia, “UU nomor 52 Tahun 2009 ten-tang Perkembangan Kependudukan dan Pembangunan Keluar-ga,” J Am Chem Soc, vol. 123, no. 10, 2009.

F. Maulidah, “Proyeksi Penduduk Dan Bonus Demografi Kota Surabaya Tahun 2020-2045 Dengan Menerapkan Aplikasi Spec-trum,” Jurnal Penelitian Kesehatan (Jpk), vol. 18, no. 1, 2020.

D. Fitriani, T. N. Padilah, and B. N. Sari, “Penerapan Algoritma K-Means Dalam Pengelompokan Kesejahteraan Rakyat Berdasar-kan Kecamatan di Kabupaten Karawang,” Progresif: Jurnal Ilmiah Komputer, vol. 17, no. 2, 2021, doi: 10.35889/progresif.v17i2.649.

P. Magal, G. M. V. Kawung, and M. TH. B. Maramis, “Pengaruh Alokasi Dana Desa terhadap Kemiskinan dan Peningkatan Kese-jahteraan Masyarakat di Desa Solimandungan Baru Kecamatan Bolaang Kabupaten Bolaang Mongondow,” Jurnal EMBA, vol. 9, no. 1, 2021.

S. C. Azhari, E. Mulyanie, and S. I. Saputri, “Kegiatan Verifikasi Dan Validasi Data Program Keluarga Harapan (Pkh) Dan Bpnt Melalui Program Pejuang Muda Di Kecamatan Banjaranyar Kabupaten Ciamis,” Jurnal Pengabdian Masyarakat Ilmu Keguruan dan Pendidikan (JPM-IKP), vol. 5, no. 1, 2022.

W. Gie and D. Jollyta, “Perbandingan Euclidean dan Manhattan Untuk Optimasi Cluster Menggunakan Davies Bouldin Index: Status Covid-19 Wilayah Riau,” Prosiding Seminar Nasional Riset Dan Information Science (SENARIS), vol. 2, 2020.

D. Triyansyah and D. Fitrianah, “Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menen-tukan Strategi Marketing,” Jurnal Telekomunikasi dan Komput-er, vol. 8, no. 3, 2018, doi: 10.22441/incomtech.v8i3.4174.

K. P. Sinaga and M. S. Yang, “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2988796.

M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algo-rithm: A comprehensive survey and performance evaluation,” Electronics (Switzerland), vol. 9, no. 8. 2020. doi: 10.3390/electronics9081295.

R. Al Izzati, “Situasi Kemiskinan Selama Pandemi,” The SMERU Research Institute, 2021.

Yuni Radana Sembiring, Saifullah, and Riki Winanjaya, “Im-plementasi Data Mining Dalam Mengelompokkan Jumlah Penduduk Miskin Berdasarkan Provinsi Menggunakan Algorit-ma,” KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen) Vol. 2, No. 2, vol. 2, no. 2, 2021.

A. Khairi, A. F. Ghozali, and A. D. N. Hidayah, “Implementasi K-Nearest Neighbor (KNN) untuk Mengklasifikasi Masyarakat Pra-Sejahtera Desa Sapikerep Kecamatan Sukapura,” TRILOGI: Jurnal Ilmu Teknologi, Kesehatan, dan Humaniora, vol. 2, no. 3, 2021, doi: 10.33650/trilogi.v2i3.2878.

Y. Fitriadi, W. Novita, and D. Endriani, “Ekonomi Kreatif Se-bagai Solusi Bagi Keluarga Pra Sejahtera Untuk Bertahan Dalam Era New Normal,” To Maega : Jurnal Pengabdian Masyarakat, vol. 4, no. 1, 2021, doi: 10.35914/tomaega.v4i1.473.

R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Da-ta Obat dengan Silhouette Coefficient di Puskesmas Ka-rangsambung,” Journal of Applied Informatics and Computing, vol. 5, no. 2, 2021, doi: 10.30871/jaic.v5i1.3237.

S. R. Durugkar, R. Raja, K. K. Nagwanshi, and S. Kumar, “Intro-duction to data mining,” Data Mining and Machine Learning Applications. 2022. doi: 10.1002/9781119792529.ch1.

M. M. Ghazal and A. Hammad, “Application of knowledge discovery in database (KDD) techniques in cost overrun of con-struction projects,” International Journal of Construction Man-agement, vol. 22, no. 9, 2022, doi: 10.1080/15623599.2020.1738205.

D. Abdullah, S. Susilo, A. S. Ahmar, R. Rusli, and R. Hidayat, “The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data,” Qual Quant, vol. 56, no. 3, 2022, doi: 10.1007/s11135-021-01176-w.

A. Nur Khormarudin, “Teknik Data Mining: Algoritma K-Means Clustering,” Jurnal Ilmu Komputer, 2016.

Y. Niagara, Ernawati, and E. P. Purwandari, “Pemanfaatan Citra Penginderaan Jauh Untuk Pemetaan Klasifikasi Tutupan Lahan Menggunakan Metode Unsupervised K-Means Berbasis Web Gis (Studi …,” Rekursif: Jurnal Informatika, vol. 8, no. 1, 2020.

N. Zulfa, R. I. Auliya, and A. Zaenal, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” Jurnal Teknologi dan Sistem Informasi (JTSI), vol. 2, no. 2, 2021.




DOI: http://dx.doi.org/10.36564/njca.v8i1.234

DOI (PDF (Bahasa Indonesia)): http://dx.doi.org/10.36564/njca.v8i1.234.g114

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Atoillah Shohibul Hikam

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

NJCA(Nusantara Journal of Computers and Its Applications)
Published by Computer Society of Nahdlatul Ulama, Indonesia.
Office : PO.BOX 1 Paiton Probolinggo kodepos 67291 Jawa Timur, Indonesia

DECREE OF THE MINISTER OF LAW AND HUMAN RIGHTS OF THE REPUBLIC OF INDONESIA
NUMBER AHU-0060541.AH.01.07.YEAR 2016