FAKTORISASI MATRIKS MENGGUNAKAN STOCHASTIC GRADIENT DESCENT UNTUK OPTIMASI SISTEM REKOMENDASI HOTEL

abu tholib, Inayatul Maula, M. Noer Hidayat

Abstract


In today's digital world, recommendation systems have a very important role to help users find hotels that match their preferences. This research focuses on developing a hotel recommendation system by combining matrix factorization method with Stochastic Gradient Descent (SGD) algorithm. The matrix factorization method is used to model the hotel ranking data as the product of the user matrix and the hotel matrix. While for the Stochastic Gradient Descent (SGD) algorithm plays a role in optimizing model parameters efficiently, where the method will be tested on hotel rating datasets or ratings. Evaluation of model performance in this study, using metrics such as Root Mean Squared (RMSE), Mean Squared Error (MSE), and Mean Absolute Error (MAE). This study shows fairly accurate results, with an RMSE value of 0.370312, an MSE value of 0.137131, and an MAE value of 0.089932. These results show that combining the matrix factorization method with Stochastic Gradient Descent (SGD) can be an effective solution for building a hotel recommendation system according to user preferences

Keywords


Matrix Factorization, Stochastic Gradient Descent, Recommendation System.

Full Text:

PDF

References


S. Seimahuira, “Implementasi datamining dalam menentukan destinasi unggulan berdasarkan online reviews tripadvisor menggunakan algoritma K-Means,” Technologia: Jurnal Ilmiah, vol. 12, no. 1, pp. 53–58, 2021.

R. Sarudin, dan Achmad Ismail, D. Tanggal Bulan Tahun, and D. Tanggal Bulan Tahun, “ANALISIS ONLINE REVIEW TRIPADVISOR.COM TERHADAP MINAT PEMBELIAN PRODUK JASA AKOMODASI DI HOTEL MANHATTAN TRIPADVISOR.COM REVIEW ONLINE ANALYSIS ON THE INTEREST OF BUYING ACCOMMODATION SERVICES IN HOTEL MANHATTAN,” vol. 7, no. 4, pp. 33–43, 2021, doi: 10.30813/.v7i1.2634.

V. Jap, J. Hartanto, and S. Wijaya, “ANALISIS KEPUASAN DAN KETIDAKPUASAN TAMU HOTEL NOVOTEL: PENDEKATAN TEXT MINING ATAS ULASAN DARING PADA SITUS WEB TRIPADVISOR,” Jurnal Manajemen Perhotelan, vol. 9, no. 2, pp. 71–80, Sep. 2023, doi: 10.9744/jmp.9.2.71-80.

P. D. A. Prastika and B. Suharto, “Analisis Efisiensi Reservasi Kamar Hotel Secara Online dari Prespektif Sistem Digital,” Jurnal Pendidikan Tambusai, vol. 7, no. 3, pp. 13807–13817, 2023.

A. Simorangkir, P. I. Sihite, C. L. Kiareni, R. Priskila, and V. H. Pranatawijaya, “PEMODELAN CHATBOT REKOMENDASI HOTEL DENGAN MENGGUNAKAN NATURAL LANGUAGE PROCESSING,” Simtek: jurnal sistem informasi dan teknik komputer, vol. 9, no. 1, pp. 46–50, 2024.

R. H. Singh, S. Maurya, T. Tripathi, T. Narula, and G. Srivastav, “Movie Recommendation System using Cosine Similarity and KNN,” Int J Eng Adv Technol, 2020, doi: 10.35940/ijeat.E9666.069520.

S. C. Aishwavarya, “OPTIMASI MODEL SISTEM REKOMENDASI FILM DENGAN NEURAL NETWORK (STUDI KASUS: PLATFORM LETTERBOXD),” 2022.

Y. Pratama, R. A. Sianturi, D. Chandra, K. Lumbantoruan, and I. T. Tampubolon, “Restricted Boltzmann Machine and Matrix Factorization-Alternating Square Algorithm for Development Tourist Recommendation System,” in Journal of Physics: Conference Series, Institute of Physics, 2022. doi: 10.1088/1742-6596/2394/1/012004.

X. Luo, Y. Zhou, Z. Liu, and M. Zhou, “Fast and accurate non-negative latent factor analysis of high-dimensional and sparse matrices in recommender systems,” IEEE Trans Knowl Data Eng, vol. 35, no. 4, pp. 3897–3911, 2021.

Z. Munawar, N. I. Putri, and D. Z. Musadad, “Meningkatkan Rekomendasi Menggunakan Algoritma Perbedaan Topik,” J-SIKA| Jurnal Sistem Informasi Karya Anak Bangsa, vol. 2, no. 02, pp. 17–26, 2020.

A. Z. Nisa, O. N. Pratiwi, and R. Y. Fa’rifah, “Klasifikasi Soal Sejarah Tingkat SMA Berdasarkan Level Kognitif Revised Bloom’s Taxonomy Menggunakan Metode Stochastic Gradient Descent,” eProceedings of Engineering, vol. 10, no. 2, 2023.

N. R. Madjid, Y. Vitriani, E. Haerani, and F. Kurnia, “Sistem Rekomendasi Hotel Di Provinsi Riau Dengan Metode AHP dan SAW,” Media Online), vol. 3, no. 6, pp. 945–956, 2023, doi: 10.30865/klik.v3i6.931.

M. Noer and F. Hidayat, “PENENTUAN GIZI ANAK MENGGUNAKAN KOMPARASI METODE C4.5 DAN K-NEAREST NEIGHBOR (KNN),” 2020.

B. Joseph, M. Kasozi, M. Bogere, and C. Nabuyaka, “Hotel Reviews on Tripadvisor.” Accessed: Mar. 26, 2024. [Online]. Available: https://www.kaggle.com/datasets/josephbrianmkasozi/review-of-ugandan-hotels-as-of-2022

J. E. Prayogo, A. Suharso, and A. Rizal, “Analisis Perbandingan Model Matrix Factorization dan K-Nearest Neighbor dalam Mesin Rekomendasi Collaborative Berbasis Prediksi Rating,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 4, p. 506, Dec. 2021, doi: 10.32493/informatika.v5i4.7379.

L. Uswatun Hasanah et al., “ANALISIS PREDIKSI HARGA RUMAH DI JABODETABEK MENGGUNAKAN MULTIPLE LINEAR REGRESSION,” JIK), vol. 7, no. 2, 2023.

A. Tholib and M. Kom, “Implementasi Algoritma Machine Learning Berbasis Web dengan Framework Streamlit,” Pustaka Nurja, 2023.

V. Virdausih Putri et al., “DETEKSI KAGGLE BOT ACCOUNT MENGGUNAKAN DEEP NEURAL NETWORKS,” 2023.

K. L. Du, M. N. S. Swamy, Z. Q. Wang, and W. H. Mow, “Matrix Factorization Techniques in Machine Learning, Signal Processing, and Statistics,” Mathematics, vol. 11, no. 12. MDPI, Jun. 01, 2023. doi: 10.3390/math11122674.

Chen Denise, “Recommender System - Matrix Factorization.” Accessed: Mar. 28, 2024. [Online]. Available: https://towardsdatascience.com/recommendation-system-matrix-factorization-d61978660b4b

kim Haneul, “Matrix Factorization Part 1: Understanding all the processes and how Stochastic Gradient Descent step is derived.” Accessed: Mar. 28, 2024. [Online]. Available: https://haneulkim.medium.com/matrix-factorization-part-i-from-derivation-of-stochastic-gradient-descent-step-to-learning-17a7d8975965

R. Umar, I. Riadi, and P. Purwono, “Klasifikasi Kinerja Programmer pada Aktivitas Media Sosial dengan Metode Stochastic Gradient Descent,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 5, no. 2, p. 55, 2020, doi: 10.31328/jointecs. v5i2. 1324, 2020.

C. Leo, “Stochastic Gradient Descent: Math and Python Code.” Accessed: Mar. 28, 2024. [Online]. Available: https://towardsdatascience.com/stochastic-gradient-descent-math-and-python-code-35b5e66d6f79

P. S. Rao, T. V. M. Rao, S. Kurumalla, and B. Prakash, “Matrix Factorization Based Recommendation System using Hybrid Optimization Technique,” EAI Endorsed Transactions on Energy Web, vol. 8, no. 35, pp. 1–7, 2021, doi: 10.4108/eai.19-2-2021.168725.

B. Walek and V. Fojtik, “A hybrid recommender system for recommending relevant movies using an expert system,” Expert Syst Appl, vol. 158, p. 113452, 2020.

S.-I. Kuan, J. Kim, O.-H. Kwon, and H.-J. Song, “Canopy K-means Combined Collaborative Filtering Using RMSE-minimization,” in 2022 IEEE International Conference on Big Data and Smart Computing (BigComp), IEEE, 2022, pp. 31–34.

Z. Arif, N. A. S. Adhi, and A. Muttaqin, “Penerapan Jaringan Syaraf Tiruan dan Certainty Factor untuk Peramalan Penjualan Sepeda Motor,” REMIK: Riset dan E-Jurnal Manajemen Informatika Komputer, vol. 7, no. 3, pp. 1523–1533, 2023.

Z. Munawar, N. I. Putri, and D. Z. Musadad, “Meningkatkan Rekomendasi Menggunakan Algoritma Perbedaan Topik,” Jurnal Sistem Informasi, vol. 01, 2020.

D. Yulion, B. N. Yahya, and V. J. L. Engel, “Building a robust transition matrix using causal matrix for route recommendation,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 768–775. doi: 10.1016/j.procs.2021.12.199.

H. A. Afif, “Membuat Recommendation Engine, menggunakan faktorisasi matriks, untuk data implicit (Part 1),” medium.com. Accessed: Mar. 28, 2024. [Online]. Available: https://medium.com/@hafizhan.aliady/membuat-recomendation-engine-menggunakan-faktorisasi-matriks-optimasi-als-alternating-least-b2823d88949f




DOI: http://dx.doi.org/10.36564/njca.v9i1.367

DOI (PDF): http://dx.doi.org/10.36564/njca.v9i1.367.g125

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 abu tholib, Inayatul Maula, M. Noer Hidayat

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

NJCA(Nusantara Journal of Computers and Its Applications)
Published by Computer Society of Nahdlatul Ulama, Indonesia.
Office : PO.BOX 1 Paiton Probolinggo kodepos 67291 Jawa Timur, Indonesia

DECREE OF THE MINISTER OF LAW AND HUMAN RIGHTS OF THE REPUBLIC OF INDONESIA
NUMBER AHU-0060541.AH.01.07.YEAR 2016