IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK AND RECURRENT NEURAL NETWORK METHODS TO PREDICT THE AMOUNT OF SALT PRODUCTION
Abstract
Sumenep is one of the salt-producing regencies in Madura with 27 sub-districts where 11 sub-districts are salt producers which have a total area of 2,077.12 ha of ponds. Generally, people only cultivate salt in certain months because this salt production can only be done and depends on several factors, such as weather and land area. From the existing problems, this research was conducted using a Deep Learning approach, namely Artificial Neural Network (ANN) and Simple Recurrent Neural Network (SimpleRNN) to predict the amount of salt production. Weather data as input and salt production data as output taken from the last 6 years (2017-2022). The accuracy value in model training was used as a comparison to make predictions. the process of dividing training and testing data was also carried out with a ratio of 80%:20%. Furthermore, both methods was given 6 trainings each, so that the training of the two methods produces a different accuracy value. The ANN model produces an accuracy value of 53% and 71% for Simple RNN. Based on the resulting accuracy value, this base cased study is suitable for using the SimpleRNN algorithm model compared to ANN, provided that the amount of data used is large-scale
Keywords
Full Text:
PDFReferences
Y. R. Sari, “Penerapan Logika Fuzzy Metode Mamdani dalam Menyelesaikan Masalah Produksi Garam Nasional,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 1, pp. 341–356, 2021, doi: 10.35957/jatisi.v8i1.647.
I. Cahyadi, H. A. Ilhamsah, and I. D. Anna, “Salt Fields Productivity Forecasting Based On Sunlight Duration, Wind Speed and Temperature Data,” IPTEK J. Proc. Ser., vol. 0, no. 5, p. 155, 2019, doi: 10.12962/j23546026.y2019i5.6294.
Azizah and Fauziah, “Implementasi Logika Fuzzy Dalam Mengoptimalkan,” vol. 5, no. 1, pp. 20–27, 2020.
B. Putra, D. Prayama, and H. Amnur, “Implementasi Jaringan Syaraf Tiruan untuk Prediksi Cuaca pada PLTA Sumatera Barat,” vol. 3, no. 2, pp. 36–41, 2022.
C. Evita, “Penerapan Artificial Neural Network Algoritma Backpropagation Pada Prediksi Produksi Jagung,” Pros. Semin. Nas. Fortei7, vol. 4, no. 1, pp. 179–184, 2021, [Online]. Available: https://journal.fortei7.org/index.php/sinarFe7/article/view/82.
H. Putra and N. Ulfa, “Jurnal Nasional Teknologi dan Sistem Informasi Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,” vol. 02, pp. 100–107, 2020.
P. Indrayati Sijabat, Y. Yuhandri, G. Widi Nurcahyo, and A. Sindar, “Algoritma Backpropagation Prediksi Harga Komoditi terhadap Karakteristik Konsumen Produk Kopi Lokal Nasional,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 11, no. 1, pp. 96–107, 2020, doi: 10.31849/digitalzone.v11i1.3880.
H. Aini, E. Budiman, M. Wati, N. Puspitasari, and H. Artikel, “Prediksi Produksi Minyak Kelapa Sawit Menggunakan Metode Backpropagation Neural Network,” vol. 1, no. 1, pp. 24–33, 2019.
M. Abdul Dwiyanto Suyudi, E. C. Djamal, A. Maspupah Jurusan Informatika, and F. Sains dan Informatika Universitas Jenderal Achmad Yani Cimahi, “Prediksi Harga Saham menggunakan Metode Recurrent Neural Network,” Semin. Nas. Apl. Teknol. Inf., pp. 1907–5022, 2019.
Muhammad Haris Diponegoro, Sri Suning Kusumawardani, and Indriana Hidayah, “Tinjauan Pustaka Sistematis: Implementasi Metode Deep Learning pada Prediksi Kinerja Murid,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 131–138, 2021, doi: 10.22146/jnteti.v10i2.1417.
N. Selle, N. Yudistira, and C. Dewi, “Perbandingan Prediksi Penggunaan Listrik dengan Menggunakan Metode Long Short-Term Memory (LSTM) dan Recurrent Neural Network (RNN),” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 1, pp. 155–162, 2022, doi: 10.25126/jtiik.202295585.
DOI: http://dx.doi.org/10.36564/njca.v8i1.314
DOI (PDF): http://dx.doi.org/10.36564/njca.v8i1.314.g115
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 miftahul walid, Dini Fajariyah, Hozairi Hozairi, Budi Satria

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.