DETEKSI KAGGLE BOT ACCOUNT MENGGUNAKAN DEEP NEURAL NETWORKS

Virda Virdausih Putri, Abu Tholib, Cahyuni Novia

Abstract


Data collection in research is challenging, especially on Kaggle, a popular platform for data scientists. However, in recent years, there have been many reports of fake accounts on Kaggle that are difficult to detect, threatening data integrity and research credibility. One of the key traits to identify fake accounts is by looking at incomplete or inconsistent profiles. This research aims to help datascience users to detect Kaggle bot accounts by building a model using Deep Neural Networks. DNN is a machine learning algorithm that mimics the nervous system in the human brain. DNN consists of input layers, hidden layers, and output layers. DNN has the advantage of learning patterns from complex data and providing more accurate results than traditional Machine Learning algorithms. This research uses a dataset consisting of 1,048,574 rows of row data and 17 variables obtained from kaggle.com. The data is then pre-processed to prepare the dataset and build a DNN model with 5 hidden layers. This DNN model will be trained using training data and tested using testing data. The results show high accuracy, with 99.90% accuracy on training data, 98.42% validation accuracy, and 99.86% accuracy on testing data. These results prove that DNN can work effectively to detect fake Kaggle accounts. With this fake account detection, the quality of research can be further improved

Keywords


Detection, Kaggle, Bot Account, Machine Learning, Deep Neural Networks

References


S. Siyoto and A. Sodik, Dasar Metodologi Penelitian. Yogyakarta: Literasi Media Publishing, 2015.

M. Arhami and M. Nasir, Data Mining Algoritma dan Implementasi. Yogyakarta: Penerbit Andi, 2020.

L. Muflikhah, D. Eka Ratnawati, and R. Regasari MP, Data Mining. Malang: Universitas Brawijaya Press, 2018.

R. Kurniawan, G. Putra Danu Sohibien, and R. Ra-hani, Cara Mudah Belajar Statistik Analisis Data & Eksplorasi. Jakarta: Prenada Media, 2019.

Suyono, R. Amaliah, D. Ariani, and A. Luciandika, Cerdas Menulis Karya Ilmiah. Malang: Gunung Samudera, 2015.

R. A. Sani, Menulis Laporan Penelitian dan Artikel Ilmiah. Mojokerto: Komunitas Penulis Kreatif, 2022.

Z. M. Chng, C. Daniel, C. Stefania, and A. Tam, Py-thon for Machine Learning. Inggris: Machine Learn-ing Mastery, 2022.

L. Quaranta, F. Calefato, and F. Lanubile, “KGTor-rent: A Dataset of Python Jupyter Notebooks from Kaggle,” in 2021 IEEE/ACM 18th International Con-ference on Mining Software Repositories (MSR), Madrid, Spain: IEEE, May 2021, pp. 550–554. doi: 10.1109/MSR52588.2021.00072.

A. R. Maizuly, B. Hartono, and I. Satria, “Penerapan Sanksi Pidana Terhadap Pelaku Tindak Pidana Ma-nipulasi dan Penciptaan melalui Akun Media Sosial Facebook,” JIC, vol. 6, no. 1, p. 12, Apr. 2022, doi: 10.35308/jic.v6i1.3794.

P. R. Indonesia, “Undang-undang Republik Indonesia Nomor 11 Tahun 2008.” Indonesia, 2008. [Online]. Available: https://www.dpr.go.id/

P. Wanda, M. E. Hiswati, M. Diqi, and R. Herlinda, “Re-Fake: Klasifikasi Akun Palsu di Sosial Media Online menggunakan Algoritma RNN,” senastindo, vol. 3, pp. 191–200, Dec. 2021, doi: 10.54706/senastindo.v3.2021.139.

H. Kurniawan, “Deteksi Twitter Bot Menggunakan Klasifikasi Decision Tree,” vol. 09, no. 01, 2020.

H. Gunawan and G. S. Budhi, “Penerapan Machine Learning dalam mendeteksi Fake Account pada In-stagram,” 2022.

Mustofa, A., Humaira, F. M., Ermawati, M., Natasari, P. S., Kurdianto, A. A., Prasetyo, A. A., & Faisal, A. L. F. (2023). TWITTER BUZZER DETECTION SYSTEM USING TWEET SIMILARITY FEATURE AND SUPPORT VECTOR MACHINE. NJCA (Nusan-tara Journal of Computers and Its Applications), 8(1), 7-12.

A. R. N. Aouichaoui, R. Al, J. Abildskov, and G. Sin, “Comparison of Group-Contribution and Machine Learning-based Property Prediction Models with Un-certainty Quantification,” in Computer Aided Chemi-cal Engineering, Elsevier, 2021, pp. 755–760. doi: 10.1016/B978-0-323-88506-5.50118-2.

X.-Y. Liu, Y. Fang, L. Yang, Z. Li, and A. Walid, “High-performance tensor decompositions for com-pressing and accelerating deep neural networks,” in Tensors for Data Processing, Elsevier, 2022, pp. 293–340. doi: 10.1016/B978-0-12-824447-0.00015-7.

F. Nur Fajri, A. Tholib, and W. Yuliana, “Application of Machine Learning Algorithm for Determining Elec-tive Courses in Informatics Study Program,” JuTISI, vol. 8, no. 3, Dec. 2022, doi: 10.28932/jutisi.v8i3.3990.

S. Syafudin, R. A. Nugraha, and K. Handayani, “Prediksi Status Pinjaman Bank dengan Deep Learn-ing Neural Network (DNN),” vol. 7, 2021.

J. Lim et al., “Development of Dye Exhaustion Be-havior Prediction Model using Deep Neural Network,” in Computer Aided Chemical Engineering, Elsevier, 2022, pp. 1825–1830. doi: 10.1016/B978-0-323-85159-6.50304-3.

W. S. Lestari and A. Halim, “Prediksi Kesuksesan Startup Menggunakan Deep Neural Network,” J. Sifo Mikrosk., vol. 23, no. 2, pp. 99–110, Oct. 2022, doi: 10.55601/jsm.v23i2.885.

M. S. Wibawa, “Pengaruh Fungsi Aktivasi, Optimisasi dan Jumlah Epoch Terhadap Performa Jaringan Saraf Tiruan,” 2017, doi: 10.13140/RG.2.2.21139.94241.

W. Setiawan, Deep Learning Menggunakan Convolu-tional Neural Network: Teori dan Aplikasi. Malang: Media Nusa Creative, 2020.

U. I. Lestari, A. Yusrotun Nadhiroh, and C. Novia, “PENERAPAN METODE K-NEAREST NEIGHBOR UNTUK SISTEM PENDUKUNG KEPUTUSAN IDENTIFIKASI PENYAKIT DIABETES MELITUS,” JATISI, vol. 8, no. 4, pp. 2071–2082, Dec. 2021, doi: 10.35957/jatisi.v8i4.1235.

D. Muchlizin Wahidillah, A. Tholib, and M. Muafi, “PENERAPAN ALGORITMA K-NEAREST NEIGHBOR UNTUK KLASIFIKASI RUMAH LAYAK ATAU TIDAK LAYAK HUNI (STUDI KASUS: DESA BULU KECAMATAN KRAKSAAN KABUPATEN PROBOLINGGO),” 2023, doi: https://doi.org/10.35316/jimi.v7i2.75-84.

C. Haryanto, N. Rahaningsih, and F. Muhammad Basysyar, “KOMPARASI ALGORITMA MACHINE LEARNING DALAM MEMPREDIKSI HARGA RUMAH,” jati, vol. 7, no. 1, pp. 533–539, Mar. 2023, doi: 10.36040/jati.v7i1.6343.




DOI: http://dx.doi.org/10.36564/njca.v8i1.304

DOI (PDF (Bahasa Indonesia)): http://dx.doi.org/10.36564/njca.v8i1.304.g113

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Virda Virdausih Putri, Abu Tholib, Cahyuni Novia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

NJCA(Nusantara Journal of Computers and Its Applications)
Published by Computer Society of Nahdlatul Ulama, Indonesia.
Office : PO.BOX 1 Paiton Probolinggo kodepos 67291 Jawa Timur, Indonesia

DECREE OF THE MINISTER OF LAW AND HUMAN RIGHTS OF THE REPUBLIC OF INDONESIA
NUMBER AHU-0060541.AH.01.07.YEAR 2016