ANALISIS RESTORASI CITRA KABUR ALGORITMA WIENER MENGGUNAKAN INDEKS KUALITAS CITRA
Abstract
Degradation and additional noise in an image will make the quality decreases. Image restoration is needed to restore the image quality to be similar to the original state. Damage to the image can restored include: blurred image, the image with noise spots, dual image, over-saturated color, and the pixel error. To make theblur image is modeled as a convolution between the original image with the point spread function (PSF) which is a point or object spectrum will be spread out so that objects appear to fade. Image restoration is done by passing a blurry image on a filter. In this study discussed Wiener image restoration algorithm using the input image is degraded motion blur and Gaussian blur. Quality image restoration results were analyzed using the image quality index, by comparing the image of the restoration of the original image as a reference. Further image restoration results used as the input image is then processed using Index Image Analysis GUI application. Each of the input image must have a resolution and dimensions that are identical to a reference image. The results showed that by providing opaqueness different models on the same image, the degree of blurring that occurs will be different. Image quality index results for the restoration of degraded image higher than the Gaussian blur image of the restoration of degraded image motion blur. Image quality index results for the restoration of degraded image motion blur ranged from 0.84229 up to 0.87146. Image quality index results for the restoration of degraded Gaussian blur images ranging from 0.86969 up to 0.90025.
Keywords: Restoration, blur image, PSF, Wiener algorithm, the image quality index.
Full Text:
PDF (Bahasa Indonesia)References
Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE signal processing letters, 9(3), 81-84.
Mrak, M., Grgic, S., & Grgic, M. (2003, September). Picture Quality Measures In Image Compression Systems. In EUROCON 2003. Computer as a Tool. The IEEE Region 8 (Vol. 1, pp. 233-236). IEEE.
Munir, R. (2006). Restorasi Citra Kabur dengan Algoritma Lucy-Richardson dan Perbandingannya dengan Penapis Wiener. In Seminar Nasional Aplikasi Teknologi Informasi (SNATI).
Effendi, H. (2009). Restorasi Citra Kabur (Blur) Menggunakan Algoritma Wiener.
Iqbal, M., Trinugroho, I. A., & Karyati, Y. (2010, December). Sistem Akuisisi Citra Stereo menggunakan Matlab. In Seminar on Application and Research in Industrial Technology, SMART Yogyakarta, 22 Juli 2009.
Niam, B., Hidayatno, A., & Isnanto, R. R. (2011). Analisis Deteksi Tepi Pada Citra Berdasarkan Perbaikan Kualitas Citra (Doctoral dissertation, Jurusan Teknik Elektro Fakultas Teknik).
Wibowo, E., Isnanto, R., & Zahra, A. A. (2013). Perbandingan Kinerja Operator Sobel dan Laplacian of Gaussian (LoG) terhadap Acuan Canny untuk Mendeteksi tepi Citra.
Wedianto, A., & Sari, H. L. (2016). Analisa Perbandingan Metode Filter Gaussian, Mean Dan Median Terhadap Reduksi Noise. Media Infotama, 12(1).
Review Paper Pemulihan Citra Blur Menggunakan Metode Lucy-Richardson dan Filter Wiener.
Ismawaty¹, A., & Dharma, E. M. Analisis dan Implementasi Deblurring Pada Citra Digital Menggunakan Inverse Filtering.
Ardi, T. P., Hidayat, B., & Saputri, D. M., (2011). Analisis Performansi Restorasi Citra Menggunakan Algoritma Lucy Richardson dan Wiener Filter Sebagai Pembanding. (Tugas Akhir, Teknik Elektro, Universitas Telkom).
Purwananto, Y., Soelaiman, R., & Rahmat, A. M., (2010) Restorasi Citra Dengan Menggunakan Metode Iteratif Lanczos-Hybrid Regularization. (Tugas Akhir, Teknik Informatika, ITS Surabaya).
Kusban, Muhammad., Restorasi Image dengan metode Wiener dan Lucy-Richardson. (2011).
DOI: http://dx.doi.org/10.36564/njca.v2i1.27
DOI (PDF (Bahasa Indonesia)): http://dx.doi.org/10.36564/njca.v2i1.27.g22
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Nur Afiyat

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.