PENERAPAN METODE FASTER REGION CONVOLUTIONAL NEURAL NETWORK (FASTER R-CNN) UNTUK DETEKSI OTOMATIS INTERAKSI LAKI-LAKI DAN PEREMPUAN

Honainah Honainah

Abstract


ABSTRACT
Nurul Jadid University is a university that implements an Islamic boarding school system. One of the existing regulations at Nurul Jadid University is that it is not allowed for men and women to communicate and interact directly. However, security at Nurul Jadid University still has difficulties in monitoring and controlling this. In this case, a tool or media is needed to identify interactions between men and women so that they are known to break the rules at Nurul Jadid University. The method used in this research is Faster Region Convolutional Neural Network (R-CNN). Faster Region Convolutional Neural Network (R-CNN) is part of a deep learning architecture. The Faster Region Convolutional Neural Network (R-CNN) method can produce automatic detection between men and women through video objects on CCTV. The test results of the Faster R-CNN method used succeeded in detecting video data interacting between men and women. The level of accuracy produced by the video testing process is 89% with 99% precision and 87% recall results.
Keywords: Detect, Interaction, Faster R-CNN

Keywords


Detect, Interaction, Faster R-CNN

References


DAFTAR PUSTAKA

Danardani, Wasti. Interaksi Pelatih Dan Atlet Dalampenetapan Tujuan. Medikora, no 2. 2008.

Gandhi, R. R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection Algorithms. Medium. https://towardsdatascience.com/r-cnn,fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e. 2018

Ren, S., He, K., Girshick, R., & Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. ArXiv:1506.01497 [Cs]. http://arxiv.org/abs/1506.01497. 2016.

CHARLI, Fino, et al. Implementasi Metode Faster Region Convolutional Neural Network (Faster R-CNN) Untuk Pengenalan Jenis Burung Lovebird. Journal of Information Technology Ampera,1.3: 185-197, 2020.

S. Ren, K. He, R.B. Girshick, dan J. Sun, “Faster R-CNN: Towards Real_time Object Detection with Region Proposal Networks,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 39, No. 6, hal. 1137- 1149, 2017.

R. Girshick, J. Donahue, T. Darrell, dan J. Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation,” IEEE Conf. on Computer Vision and Pattern Recognition, hal. 580- 587, 2014.

S.M. Abbas dan S.N. Singh, “Region-based Object Detection and Classification Using Faster R-CNN,” Int. Conf. on Computational Intelligence and Communication Technology, 2018, hal. 1-6.

B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, dan K. Ouni, “Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3,” 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), hal. 1-6, 2019.

Nafi’iyah, N. & Wardhani, R., Sistem Identifikasi Jenis Kelamin. Seminar Nasional Hasil Penelitian dan Pengabdian Masyarakat, pp. 120-122, 2016.

Choirina, P., & Asmara, R. A. (). Deteksi Jenis Kelamin Berdasarkan Citra Wajah Jarak Jauh Dengan Metode Haar Cascade Classifier. Jurnal Informatika Polinema, 2, 164–169, 2016.

Nursalam. (2017). Metodologi Penelitian Ilmu Keperawatan: Pendekatan Praktis. (P. P. Lestari, Ed.) (4th ed.). Jakarta: Salemba Medika

Purnama, B.Pengantar Machine Learning Konsep dan Praktikum dengan Contoh Latihan Berbasis R dan Python. Informatika. 2019.




DOI: http://dx.doi.org/10.36564/njca.v7i1.254

DOI (PDF (Bahasa Indonesia)): http://dx.doi.org/10.36564/njca.v7i1.254.g98

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Honainah Honainah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

NJCA(Nusantara Journal of Computers and Its Applications)
Published by Computer Society of Nahdlatul Ulama, Indonesia.
Office : PO.BOX 1 Paiton Probolinggo kodepos 67291 Jawa Timur, Indonesia

DECREE OF THE MINISTER OF LAW AND HUMAN RIGHTS OF THE REPUBLIC OF INDONESIA
NUMBER AHU-0060541.AH.01.07.YEAR 2016



File usage_events_20251020.log could not be moved from /home/csnc8598/public_html/journal/backup-1.20.2022_12-11-45_njca/usageStats/processing/usage_events_20251020.log to /home/csnc8598/public_html/journal/backup-1.20.2022_12-11-45_njca/usageStats/archive/usage_events_20251020.log